Nilpotent centralizers and Springer isomorphisms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary Invariants for Centralizers of Nilpotent Matrices

We construct an explicit set of algebraically independent generators for the center of the universal enveloping algebra of the centralizer of a nilpotent matrix in the general linear Lie algebra over a field of characteristic zero. In particular, this gives a new proof of the freeness of the center, a result first proved by Panyushev, Premet and Yakimova.

متن کامل

Deformations of nilpotent cones and Springer correspondences

Let G = Sp(2n) be the symplectic group over Z. We present a certain kind of deformation of the nilpotent cone of G with G-action. This enables us to make direct links between the Springer correspondence of sp 2n over C, that over characteristic two, and our exotic Springer correspondence. As a by-product, we obtain a complete description of our exotic Springer correspondence.

متن کامل

Isomorphisms of Cayley graphs on nilpotent groups

Let S be a finite generating set of a torsion-free, nilpotent group G. We show that every automorphism of the Cayley graph Cay(G;S) is affine. (That is, every automorphism of the graph is obtained by composing a group automorphism with multiplication by an element of the group.) More generally, we show that if Cay(G1;S1) and Cay(G2;S2) are connected Cayley graphs of finite valency on two nilpot...

متن کامل

Nilpotent Orbits in Classical Lie Algebras over Finite Fields of Characteristic 2 and the Springer Correspondence

Let G be an adjoint algebraic group of type B, C, or D over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the Lie algebra of G. In particular, for orthogonal Lie algebras in characteristic 2, the structure of component groups of nilpotent centralizers is determined and the number of nilpotent orbits over finite fields is obtained.

متن کامل

Definable Envelopes of Nilpotent Subgroups of Groups with Chain Conditions on Centralizers

An MC group is a group in which all chains of centralizers have finite length. In this article, we show that every nilpotent subgroup of an MC group is contained in a definable subgroup which is nilpotent of the same nilpotence class. Definitions are uniform when the lengths of chains are bounded.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2009

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2008.12.007